Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Cell ; 187(7): 1589-1616, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552609

RESUMO

The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.


Assuntos
Neoplasias , Humanos , Carcinogênese , Microbiota , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Obesidade/complicações , Qualidade de Vida
2.
Pain ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38293826

RESUMO

ABSTRACT: Visceral pain is a leading cause of morbidity in inflammatory bowel disease (IBD), contributing significantly to reduced quality of life. Currently available analgesics often lack efficacy or have intolerable side effects, driving the need for a more complete understanding of the mechanisms causing pain. Whole transcriptome gene expression analysis was performed by bulk RNA sequencing of colonic biopsies from patients with ulcerative colitis (UC) and Crohn's disease (CD) reporting abdominal pain and compared with noninflamed control biopsies. Potential pronociceptive mediators were identified based on gene upregulation in IBD biopsy tissue and cognate receptor expression in murine colonic sensory neurons. Pronociceptive activity of identified mediators was assessed in assays of sensory neuron and colonic afferent activity. RNA sequencing analysis highlighted a 7.6-fold increase in the expression of angiotensinogen transcripts, Agt , which encode the precursor to angiotensin II (Ang II), in samples from UC patients ( P = 3.2 × 10 -8 ). Consistent with the marked expression of the angiotensin AT 1 receptor in colonic sensory neurons, Ang II elicited an increase in intracellular Ca 2+ in capsaicin-sensitive, voltage-gated sodium channel subtype Na V 1.8-positive sensory neurons. Ang II also evoked action potential discharge in high-threshold colonic nociceptors. These effects were inhibited by the AT 1 receptor antagonist valsartan. Findings from our study identify AT 1 receptor-mediated colonic nociceptor activation as a novel pathway of visceral nociception in patients with UC. This work highlights the potential utility of angiotensin receptor blockers, such as valsartan, as treatments for pain in IBD.

3.
Eur J Pharmacol ; 961: 176182, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951488

RESUMO

Opioids are widely used in the treatment of moderate and severe pain. Nociceptive stimulation has been reported to potentially promote microglial activation and neuroinflammation, which also causes chronic pain sensitization. The aim of this study was to demonstrate whether the novel µ receptor agonist MEL-0614 could inhibit activated microglia directly and the associated signaling pathway. Mice were administered lipopolysaccharide and formalin to induce allodynia. Von Frey test was used to detect the anti-allodynia effect of MEL-0614 before and after LPS and formalin injection. In the spinal cord, the levels of proinflammatory cytokines and microglial activation were determined after MEL-0614 administration. BV2 and primary microglia were cultured to further explore the effect of MEL-0614 on LPS-induced microglial activation and key signaling pathways involved. MEL-0614 partially prevented and reversed allodynia induced by LPS and formalin in vivo, which was not inhibited by the µ receptor antagonist CTAP. Minocycline was effective in reversing the established allodynia. MEL-0614 also downregulated the activation of microglia and related proinflammatory cytokines in the spinal cord. Additionally, in BV2 and primary microglia, MEL-0614 inhibited the LPS-induced upregulation of proinflammatory factors, which was unaffected by CTAP. The NLR family pyrin domain containing 3 (NLRP3) related signaling pathway may be involved in the interaction between MEL-0614 and microglia. The opioid agonist MEL-0614 inhibited the activation of microglia and the subsequent upregulation of proinflammatory factors both in vivo and in vitro. Notably, this effect is partially mediated by the µ receptor.


Assuntos
Hiperalgesia , Microglia , Camundongos , Animais , Hiperalgesia/metabolismo , Receptores Opioides mu/metabolismo , Lipopolissacarídeos/farmacologia , Dor/induzido quimicamente , Citocinas/metabolismo , Formaldeído/efeitos adversos
4.
eNeuro ; 10(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37679042

RESUMO

Drive from peripheral neurons is essential in almost all pain states, but pharmacological silencing of these neurons to effect analgesia has proved problematic. Reversible gene therapy using long-lived chemogenetic approaches is an appealing option. We used the genetically activated chloride channel PSAM4-GlyR to examine pain pathways in mice. Using recombinant AAV9-based delivery to sensory neurons, we found a reversal of acute pain behavior and diminished neuronal activity using in vitro and in vivo GCaMP imaging on activation of PSAM4-GlyR with varenicline. A significant reduction in inflammatory heat hyperalgesia and oxaliplatin-induced cold allodynia was also observed. Importantly, there was no impairment of motor coordination, but innocuous von Frey sensation was inhibited. We generated a transgenic mouse that expresses a CAG-driven FLExed PSAM4-GlyR downstream of the Rosa26 locus that requires Cre recombinase to enable the expression of PSAM4-GlyR and tdTomato. We used NaV1.8 Cre to examine the role of predominantly nociceptive NaV1.8+ neurons in cancer-induced bone pain (CIBP) and neuropathic pain caused by chronic constriction injury (CCI). Varenicline activation of PSAM4-GlyR in NaV1.8-positive neurons reversed CCI-driven mechanical, thermal, and cold sensitivity. Additionally, varenicline treatment of mice with CIBP expressing PSAM4-GlyR in NaV1.8+ sensory neurons reversed cancer pain as assessed by weight-bearing. Moreover, when these mice were subjected to acute pain assays, an elevation in withdrawal thresholds to noxious mechanical and thermal stimuli was detected, but innocuous mechanical sensations remained unaffected. These studies confirm the utility of PSAM4-GlyR chemogenetic silencing in chronic pain states for mechanistic analysis and potential future therapeutic use.


Assuntos
Dor Aguda , Dor do Câncer , Neoplasias , Camundongos , Animais , Dor do Câncer/terapia , Dor do Câncer/metabolismo , Dor Aguda/metabolismo , Vareniclina , Células Receptoras Sensoriais/fisiologia , Hiperalgesia/metabolismo , Camundongos Transgênicos , Neoplasias/metabolismo , Gânglios Espinais/metabolismo
5.
Brain ; 146(10): 4033-4039, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37249190

RESUMO

Melzak and Wall's gate control theory proposed that innocuous input into the dorsal horn of the spinal cord represses pain-inducing nociceptive input. Here we show that input from proprioceptive parvalbumin-expressing sensory neurons tonically represses nociceptor activation within dorsal root ganglia. Deletion of parvalbumin-positive sensory neurons leads to enhanced nociceptor activity measured with GCaMP3, increased input into wide dynamic range neurons of the spinal cord and increased acute and spontaneous pain behaviour, as well as potentiated innocuous sensation. Parvalbumin-positive sensory neurons express the enzymes and transporters necessary to produce vesicular GABA that is known to be released from depolarized somata. These observations support the view that gate control mechanisms occur peripherally within dorsal root ganglia.


Assuntos
Parvalbuminas , Células Receptoras Sensoriais , Humanos , Transmissão Sináptica , Dor , Gânglios Espinais
6.
Brain ; 146(9): 3851-3865, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222214

RESUMO

Chronic pain affects millions of people worldwide and new treatments are needed urgently. One way to identify novel analgesic strategies is to understand the biological dysfunctions that lead to human inherited pain insensitivity disorders. Here we report how the recently discovered brain and dorsal root ganglia-expressed FAAH-OUT long non-coding RNA (lncRNA) gene, which was found from studying a pain-insensitive patient with reduced anxiety and fast wound healing, regulates the adjacent key endocannabinoid system gene FAAH, which encodes the anandamide-degrading fatty acid amide hydrolase enzyme. We demonstrate that the disruption in FAAH-OUT lncRNA transcription leads to DNMT1-dependent DNA methylation within the FAAH promoter. In addition, FAAH-OUT contains a conserved regulatory element, FAAH-AMP, that acts as an enhancer for FAAH expression. Furthermore, using transcriptomic analyses in patient-derived cells we have uncovered a network of genes that are dysregulated from disruption of the FAAH-FAAH-OUT axis, thus providing a coherent mechanistic basis to understand the human phenotype observed. Given that FAAH is a potential target for the treatment of pain, anxiety, depression and other neurological disorders, this new understanding of the regulatory role of the FAAH-OUT gene provides a platform for the development of future gene and small molecule therapies.


Assuntos
RNA Longo não Codificante , Humanos , Dor/genética , Analgésicos , Gânglios Espinais
7.
Nat Commun ; 14(1): 2442, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117223

RESUMO

Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons.


Assuntos
Toxinas Biológicas , Urtica dioica , Austrália , Dor , Peptídeos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(17): e2211631120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37071676

RESUMO

Fibromyalgia is a debilitating widespread chronic pain syndrome that occurs in 2 to 4% of the population. The prevailing view that fibromyalgia results from central nervous system dysfunction has recently been challenged with data showing changes in peripheral nervous system activity. Using a mouse model of chronic widespread pain through hyperalgesic priming of muscle, we show that neutrophils invade sensory ganglia and confer mechanical hypersensitivity on recipient mice, while adoptive transfer of immunoglobulin, serum, lymphocytes, or monocytes has no effect on pain behavior. Neutrophil depletion abolishes the establishment of chronic widespread pain in mice. Neutrophils from patients with fibromyalgia also confer pain on mice. A link between neutrophil-derived mediators and peripheral nerve sensitization is already established. Our observations suggest approaches for targeting fibromyalgia pain via mechanisms that cause altered neutrophil activity and interactions with sensory neurons.


Assuntos
Dor Crônica , Fibromialgia , Humanos , Neutrófilos , Hiperalgesia , Gânglios Sensitivos
9.
eNeuro ; 10(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36720644

RESUMO

Oxaliplatin is a platinum-based chemotherapeutic agent that causes cold and mechanical allodynia in up to 90% of patients. Silent Nav1.8-positive nociceptive cold sensors have been shown to be unmasked by oxaliplatin, and this event has been causally linked to the development of cold allodynia. We examined the effects of pregabalin on oxaliplatin-evoked unmasking of cold sensitive neurons using mice expressing GCaMP-3 in all sensory neurons. Intravenous injection of pregabalin significantly ameliorates cold allodynia, while decreasing the number of cold sensitive neurons by altering their excitability and temperature thresholds. The silenced neurons are predominantly medium/large mechano-cold sensitive neurons, corresponding to the "silent" cold sensors activated during neuropathy. Deletion of α2δ1 subunits abolished the effects of pregabalin on both cold allodynia and the silencing of sensory neurons. Thus, these results define a novel, peripheral inhibitory effect of pregabalin on the excitability of "silent" cold-sensing neurons in a model of oxaliplatin-dependent cold allodynia.


Assuntos
Hiperalgesia , Células Receptoras Sensoriais , Camundongos , Animais , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Hiperalgesia/tratamento farmacológico , Pregabalina/farmacologia , Pregabalina/uso terapêutico , Temperatura Baixa
11.
Nat Rev Dis Primers ; 8(1): 41, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710757

RESUMO

Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.


Assuntos
Canalopatias , Neuropatias Hereditárias Sensoriais e Autônomas , Insensibilidade Congênita à Dor , Neuropatias Hereditárias Sensoriais e Autônomas/complicações , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Humanos , Dor/genética , Insensibilidade Congênita à Dor/genética
12.
Pain ; 163(11): 2172-2184, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35135993

RESUMO

ABSTRACT: Itch is an unpleasant sensation that evokes a desire to scratch. Pathologic conditions such as allergy or atopic dermatitis produce severe itching sensation. Mas-related G protein receptors (Mrgprs) are receptors for many endogenous pruritogens. However, signaling pathways downstream to these receptors in dorsal root ganglion (DRG) neurons are not yet understood. We found that anoctamin 1 (ANO1), a Ca 2+ -activated chloride channel, is a transduction channel mediating Mrgpr-dependent itch signals. Genetic ablation of Ano1 in DRG neurons displayed a significant reduction in scratching behaviors in response to acute and chronic Mrgpr-dependent itch models and the epidermal hyperplasia induced by dry skin. In vivo Ca 2+ imaging and electrophysiological recording revealed that chloroquine and other agonists of Mrgprs excited DRG neurons via ANO1. More importantly, the overexpression of Ano1 in DRG neurons of Ano1 -deficient mice rescued the impaired itching observed in Ano1 -deficient mice. These results demonstrate that ANO1 mediates the Mrgpr-dependent itch signaling in pruriceptors and provides clues to treating pathologic itch syndromes.


Assuntos
Gânglios Espinais , Prurido , Animais , Camundongos , Anoctamina-1/genética , Anoctamina-1/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Cloroquina/uso terapêutico , Gânglios Espinais/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Prurido/induzido quimicamente
13.
Neurobiol Pain ; 11: 100083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35079661

RESUMO

Somatosensation and pain are complex phenomena involving a rangeofspecialised cell types forming different circuits within the peripheral and central nervous systems. In recent decades, advances in the investigation of these networks, as well as their function in sensation, resulted from the constant evolution of electrophysiology and imaging techniques to allow the observation of cellular activity at the population level both in vitro and in vivo. Genetically encoded indicators of neuronal activity, combined with recent advances in DNA engineering and modern microscopy, offer powerful tools to dissect and visualise the activity of specific neuronal subpopulations with high spatial and temporal resolution. In recent years various groups developed in vivo imaging techniques to image calcium transients in the dorsal root ganglia, the spinal cord and the brain of anesthetised and awake, behaving animals to address fundamental questions in both the physiology and pathophysiology of somatosensation and pain. This approach, besides giving unprecedented details on the circuitry of innocuous and painful sensation, can be a very powerful tool for pharmacological research, from the characterisation of new potential drugs to the discovery of new, druggable targets within specific neuronal subpopulations. Here we summarise recent developments in calcium imaging for pain research, discuss technical challenges and advances, and examine the potential positive impact of this technique in early preclinical phases of the analgesic drug discovery process.

14.
Front Pain Res (Lausanne) ; 3: 1030899, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36688083

RESUMO

Personalised and targeted interventions have revolutionised cancer treatment and dramatically improved survival rates in recent decades. Nonetheless, effective pain management remains a problem for patients diagnosed with cancer, who continue to suffer from the painful side effects of cancer itself, as well as treatments for the disease. This problem of cancer pain will continue to grow with an ageing population and the rapid advent of more effective therapeutics to treat the disease. Current pain management guidelines from the World Health Organisation are generalised for different pain severities, but fail to address the heterogeneity of mechanisms in patients with varying cancer types, stages of disease and treatment plans. Pain is the most common complaint leading to emergency unit visits by patients with cancer and over one-third of patients that have been diagnosed with cancer will experience under-treated pain. This review summarises preclinical models of cancer pain states, with a particular focus on cancer-induced bone pain and chemotherapy-associated pain. We provide an overview of how preclinical models can recapitulate aspects of pain and sensory dysfunction that is observed in patients with persistent cancer-induced bone pain or neuropathic pain following chemotherapy. Peripheral and central nervous system mechanisms of cancer pain are discussed, along with key cellular and molecular mediators that have been highlighted in animal models of cancer pain. These include interactions between neuronal cells, cancer cells and non-neuronal cells in the tumour microenvironment. Therapeutic targets beyond opioid-based management are reviewed for the treatment of cancer pain.

15.
Brain ; 145(10): 3637-3653, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34957475

RESUMO

Patients with bi-allelic loss of function mutations in the voltage-gated sodium channel Nav1.7 present with congenital insensitivity to pain (CIP), whilst low threshold mechanosensation is reportedly normal. Using psychophysics (n = 6 CIP participants and n = 86 healthy controls) and facial electromyography (n = 3 CIP participants and n = 8 healthy controls), we found that these patients also have abnormalities in the encoding of affective touch, which is mediated by the specialized afferents C-low threshold mechanoreceptors (C-LTMRs). In the mouse, we found that C-LTMRs express high levels of Nav1.7. Genetic loss or selective pharmacological inhibition of Nav1.7 in C-LTMRs resulted in a significant reduction in the total sodium current density, an increased mechanical threshold and reduced sensitivity to non-noxious cooling. The behavioural consequence of loss of Nav1.7 in C-LTMRs in mice was an elevation in the von Frey mechanical threshold and less sensitivity to cooling on a thermal gradient. Nav1.7 is therefore not only essential for normal pain perception but also for normal C-LTMR function, cool sensitivity and affective touch.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Insensibilidade Congênita à Dor , Animais , Humanos , Camundongos , Mecanorreceptores , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Insensibilidade Congênita à Dor/genética , Sódio
16.
Auton Neurosci ; 237: 102902, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34773738

RESUMO

The story of purinergic neurotransmission and regulation is intimately linked to studies of the somatosensory system. Burnstock's contributions to the discovery of ATP as a primary afferent neurotransmitter, as well as a signal of peripheral tissue damage that depolarised sensory neurons initiated a new period of pain research. The neuro-immune interactions that occur after tissue damage and are important for pain have now also been found to involve purinergic signalling, and adenosine has been demonstrated to have significant analgesic effects. In the pain field as in so many other areas of neuroscience and physiology, Burnstock's contributions have been critical to the expansion of our knowledge about the significance of purines. His mechanistic insights have profound significance for understanding the pain system and further underscore his stature as a pioneer and force for progress in biomedicine.


Assuntos
Purinas , Receptores Purinérgicos , Trifosfato de Adenosina , Humanos , Dor , Transdução de Sinais , Transmissão Sináptica
17.
J Neurosci ; 41(39): 8249-8261, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34400519

RESUMO

Pain is the major debilitating symptom of osteoarthritis (OA), which is difficult to treat. In OA patients joint tissue damage only poorly associates with pain, indicating other mechanisms contribute to OA pain. Immune cells regulate the sensory system, but little is known about the involvement of immune cells in OA pain. Here, we report that macrophages accumulate in the dorsal root ganglia (DRG) distant from the site of injury in two rodent models of OA. DRG macrophages acquired an M1-like phenotype, and depletion of DRG macrophages resolved OA pain in male and female mice. Sensory neurons innervating the damaged knee joint shape DRG macrophages into an M1-like phenotype. Persisting OA pain, accumulation of DRG macrophages, and programming of DRG macrophages into an M1-like phenotype were independent of Nav1.8 nociceptors. Inhibition of M1-like macrophages in the DRG by intrathecal injection of an IL4-IL10 fusion protein or M2-like macrophages resolved persistent OA pain. In conclusion, these findings reveal a crucial role for macrophages in maintaining OA pain independent of the joint damage and suggest a new direction to treat OA pain.SIGNIFICANCE STATEMENT In OA patients pain poorly correlates with joint tissue changes indicating mechanisms other than only tissue damage that cause pain in OA. We identified that DRG containing the somata of sensory neurons innervating the damaged knee are infiltrated with macrophages that are shaped into an M1-like phenotype by sensory neurons. We show that these DRG macrophages actively maintain OA pain remotely and independent of joint damage. The phenotype of these macrophages is crucial for a pain-promoting role. Targeting the phenotype of DRG macrophages with either M2-like macrophages or a cytokine fusion protein that skews macrophages into an M2-like phenotype resolves OA pain. Our work reveals a mechanism that contributes to the maintenance of OA pain distant from the affected knee joint and suggests that dorsal root ganglia macrophages are a target to treat osteoarthritis chronic pain.


Assuntos
Artrite Experimental/metabolismo , Gânglios Espinais/metabolismo , Macrófagos/metabolismo , Osteoartrite/metabolismo , Dor/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Feminino , Masculino , Camundongos , Nociceptores/fisiologia
18.
Neuron ; 109(9): 1497-1512.e6, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33823138

RESUMO

Deletion of SCN9A encoding the voltage-gated sodium channel NaV1.7 in humans leads to profound pain insensitivity and anosmia. Conditional deletion of NaV1.7 in sensory neurons of mice also abolishes pain, suggesting that the locus of analgesia is the nociceptor. Here we demonstrate, using in vivo calcium imaging and extracellular recording, that NaV1.7 knockout mice have essentially normal nociceptor activity. However, synaptic transmission from nociceptor central terminals in the spinal cord is greatly reduced by an opioid-dependent mechanism. Analgesia is also reversed substantially by central but not peripheral application of opioid antagonists. In contrast, the lack of neurotransmitter release from olfactory sensory neurons is opioid independent. Male and female humans with NaV1.7-null mutations show naloxone-reversible analgesia. Thus, inhibition of neurotransmitter release is the principal mechanism of anosmia and analgesia in mouse and human Nav1.7-null mutants.


Assuntos
Analgesia , Canal de Sódio Disparado por Voltagem NAV1.7/deficiência , Neurônios Receptores Olfatórios/metabolismo , Dor/genética , Transmissão Sináptica/fisiologia , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Transtornos do Olfato/congênito , Transtornos do Olfato/genética
19.
Brain ; 144(6): 1711-1726, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33693512

RESUMO

Patients with neuropathic pain often experience innocuous cooling as excruciating pain. The cell and molecular basis of this cold allodynia is little understood. We used in vivo calcium imaging of sensory ganglia to investigate how the activity of peripheral cold-sensing neurons was altered in three mouse models of neuropathic pain: oxaliplatin-induced neuropathy, partial sciatic nerve ligation, and ciguatera poisoning. In control mice, cold-sensing neurons were few in number and small in size. In neuropathic animals with cold allodynia, a set of normally silent large diameter neurons became sensitive to cooling. Many of these silent cold-sensing neurons responded to noxious mechanical stimuli and expressed the nociceptor markers Nav1.8 and CGRPα. Ablating neurons expressing Nav1.8 resulted in diminished cold allodynia. The silent cold-sensing neurons could also be activated by cooling in control mice through blockade of Kv1 voltage-gated potassium channels. Thus, silent cold-sensing neurons are unmasked in diverse neuropathic pain states and cold allodynia results from peripheral sensitization caused by altered nociceptor excitability.


Assuntos
Temperatura Baixa/efeitos adversos , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Nociceptores/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Sensação Térmica/fisiologia
20.
Clin Transl Gastroenterol ; 12(2): e00313, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33617189

RESUMO

INTRODUCTION: Despite heterogeneity, an increased prevalence of psychological comorbidity and an altered pronociceptive gut microenvironment have repeatedly emerged as causative pathophysiology in patients with irritable bowel syndrome (IBS). Our aim was to study these phenomena by comparing gut-related symptoms, psychological scores, and biopsy samples generated from a detailed diarrhea-predominant IBS patient (IBS-D) cohort before their entry into a previously reported clinical trial. METHODS: Data were generated from 42 patients with IBS-D who completed a daily 2-week bowel symptom diary, the Hospital Anxiety and Depression score, and the Patient Health Questionnaire-12 Somatic Symptom score and underwent unprepared flexible sigmoidoscopy. Sigmoid mucosal biopsies were separately evaluated using immunohistochemistry and culture supernatants to determine cellularity, mediator levels, and ability to stimulate colonic afferent activity. RESULTS: Pain severity scores significantly correlated with the daily duration of pain (r = 0.67, P < 0.00001), urgency (r = 0.57, P < 0.0005), and bloating (r = 0.39, P < 0.05), but not with psychological symptom scores for anxiety, depression, or somatization. Furthermore, pain severity scores from individual patients with IBS-D were significantly correlated (r = 0.40, P < 0.008) with stimulation of colonic afferent activation mediated by their biopsy supernatant, but not with biopsy cell counts nor measured mediator levels. DISCUSSION: Peripheral pronociceptive changes in the bowel seem more important than psychological factors in determining pain severity within a tightly phenotyped cohort of patients with IBS-D. No individual mediator was identified as the cause of this pronociceptive change, suggesting that nerve targeting therapeutic approaches may be more successful than mediator-driven approaches for the treatment of pain in IBS-D.


Assuntos
Dor Abdominal/etiologia , Vias Aferentes/fisiopatologia , Colo Sigmoide/inervação , Síndrome do Intestino Irritável/fisiopatologia , Adulto , Animais , Ansiedade , Biópsia , Depressão , Diarreia/etiologia , Feminino , Mutação com Ganho de Função , Humanos , Imuno-Histoquímica , Mucosa Intestinal/inervação , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/psicologia , Masculino , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Índice de Gravidade de Doença , Sigmoidoscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...